Exam Seat No: **Enrollment No:** C.U.SHAH UNIVERSITY Wadhwan City Subject Code : 5SC02MTC3 **Summer Examination-2014** Date: 13/06/2014 Subject Name:- Functional Analysis-I Branch/Semester:- M.Sc(Mathematics)/II Time:02:00 To 5:00 Examination: Regular Instructions:-(1) Attempt all Questions of both sections in same answer book / Supplementary (2) Use of Programmable calculator & any other electronic instrument is prohibited. (3) Instructions written on main answer Book are strictly to be obeyed. (4) Draw neat diagrams & figures (If necessary) at right places (5) Assume suitable & Perfect data if needed **SECTION-I** Q-1 a) Define normed linear space. (01)b) Define separable space. (01)c) Let X be an inner product space. For $x \in X$, define $\|x\|: X \to R$, as (02) $\|x\| = \sqrt{\langle x, x \rangle}.$ Then show that $\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).$ d) Define weakly convergent sequence. (01)e) Let X be a normed linear space and $T: X \rightarrow X$ be linear. If T is continuous (02)at 0, then show that T is continuous on X. Q-2 a) Show that l^2 is an inner product space with the inner product, for (05) $x = (x_j)_{j>1}, \ y = (y_j)_{j>1} \in l^2, < x, \ y > = \sum_{j=1}^{\infty} x_j \overline{y_j}.$ b) State and prove Schwarz's inequality for an inner product space. When (05)does the equality hold? c) If X be an inner product space and $\{u_1, u_2, u_3, ..., u_n, ...\}$ be an orthonormal (04)subset of X. Let $\{\lambda_n\}$ be a sequence in K. If $\sum_{n=1}^{\infty} \lambda_n u_n$ converges to xin X, then prove that $\sum_{n=1}^{\infty} |\lambda_n|^2 < \infty$ and $\lambda_n = \langle x, u_n \rangle$. Q-2 a) State and prove Bessel's inequality. (05)b) Let $x_n(t) = t^n$, $n = 0, 1, 2, 3, ...; t \in [-1, 1]$, then $\{x_n, x_1, x_2, ...\}$ is a (05)linearly independent subset of the set of all Riemann integrable functions on $\begin{bmatrix} -1, 1 \end{bmatrix}$, i.e. $R_w^2 \begin{bmatrix} -1, 1 \end{bmatrix}$. Also let w(t) = 1. Using Gram-Schmidt orthonormalization process covert this set into orthonormal set, where $\langle f, g \rangle = \int_{-1}^{1} f \, \overline{g} \, w \, dt$, for $f, g \in R_{w}^{2}[-1, 1]$. c) Prove that $x_n \to x$ in *H* iff (x_n) convergence weakly to x and $||x_n|| \to ||x||$. (04)

- Q-3 (a) Let H be a Hilbert space. Then show that the following are equivalent. (07)
 - (i) H has countable orthonormal basis.
 - (ii) H is isometric isomorphic to K^n or l^2 .

(iii)H is separable.

(b) State and prove Riesz representation theorem. Also give an example which (07) shows that completeness is essential for it.

OR

- Q-3 a) State and prove projection theorem.
 - b) If $x_n \to x$ in H iff $\langle x_n, y \rangle \to \langle x, y \rangle$ uniformly for $y \in H$, $\|y\| \le 1$. (04)
 - c) For $f, g \in H'$, define $\langle f, g \rangle' = \langle y_{u'}, y_{f'} \rangle$, where y_{u} is the representator of (03) f. Then prove that H' is a Hilbert space.

SECTION-II

Q-4	a) Define self-adjoint operator and normal operator.	(02)
	b) If A and B are unitary operators on H, then show that AB is also an unitary operator.	(02)
	c) Define approximate eigen value of an operator $A \in BL(H)$.	(01)
	d) Show that, if A is normal then, $\lambda \in \sigma_{\epsilon}(A)$ iff $\overline{\lambda} \in \sigma_{\epsilon}(A^{*})$.	(02)
Q-5	a) Let $A \in BL(H)$. Then \exists unique self adjoint operators $B, C \in BL(H)$ such that $A = B + iC$.	(05)
	b) Let $A \in BL(H)$. Then show that there exists unique $B \in BL(H)$ such that $\langle Ax, y \rangle = \langle x, By \rangle$, for all $x, y \in H$.	(05)
	c) Show that $\sigma_{e}(A) \subset \sigma_{a}(A) \subset \sigma(A)$, for $A \in BL(H)$.	(04)
OR		
Q-5	a) Let $A \in BL(H)$. Prove that A^* is bounded below iff $R(A) = H$.	(05)
	b) Let $H = l^2$. Define $A: H \to H$, as	(05)
	A(x(1), x(2), x(3),) = (0, x(1), x(2), x(3),). Then find matrix of A with respect to standard basis of H and using matrix find $A^*(x(1), x(2), x(3),)$.	
	c) Give an operator A for which $\sigma_{\sigma}(A)$ is empty.	(04)
Q-6	a) Let $A \in BL(H)$. Prove that A is unitary iff A is isometry $(Ax = x)$ and onto.	(05)
	b) Let $A: H \to H$ be linear operator. The prove that A is compact iff $\overline{A(U)}$ is a compact subset of H, where $U = \{x \in H: x < 1\}$.	(05)
	c) Let A, B be compact operators on H . Then $A + B, \alpha A (\alpha \in K)$ are compact.	(04)

(07)

- Q-6 a) Let *H* be a separable Hilbert space. Let $A \in BL(H)$ be a Hilbert Schmidf (07) operator, then prove that *A* is compact.
 - b) Let *H* be a non-zero Hilbert space and *A* be a compact operator on *H*. Then (07) prove that every non-zero approximate eigen value of *A* is an eigen value of *A* and the dimension of the eigen space is finite corresponding to non-zero eigen value.

******13***14****S

OR